
snakebite Documentation
Release 2.11.0

Wouter de Bie

August 08, 2016

Contents

1 Client library 3

2 CLI client 11
2.1 Config . 11
2.2 Bash completion . 12
2.3 Usage . 12

3 Development 15
3.1 How to start . 15
3.2 Open issues . 15

4 Testing 17
4.1 Tox . 17
4.2 Fig . 18

5 Minicluster 19

6 Hadoop RPC protocol description 21
6.1 Connection . 21
6.2 Sending messages . 21
6.3 Receiving messages . 22

7 Background 23

8 LICENSE 25

9 Indices and tables 27

Python Module Index 29

i

ii

snakebite Documentation, Release 2.11.0

Snakebite is a python package that provides:

Contents 1

snakebite Documentation, Release 2.11.0

2 Contents

CHAPTER 1

Client library

class snakebite.client.Client(host, port=8020, hadoop_version=9, use_trash=False, effec-
tive_user=None, use_sasl=False, hdfs_namenode_principal=None,
sock_connect_timeout=10000, sock_request_timeout=10000,
use_datanode_hostname=False)

A pure python HDFS client.

Example:

>>> from snakebite.client import Client
>>> client = Client("localhost", 8020, use_trash=False)
>>> for x in client.ls(['/']):
... print x

Warning: Many methods return generators, which mean they need to be consumed to execute! Documen-
tation will explicitly specify which methods return generators.

Note: paths parameters in methods are often passed as lists, since operations can work on multiple paths.

Note: Parameters like include_children and recurse are not used when paths contain globs.

Note: Different Hadoop distributions use different protocol versions. Snakebite defaults to 9, but this can be
set by passing in the hadoop_version parameter to the constructor.

Parameters

• host (string) – Hostname or IP address of the NameNode

• port (int) – RPC Port of the NameNode

• hadoop_version (int) – What hadoop protocol version should be used (default: 9)

• use_trash (boolean) – Use a trash when removing files.

• effective_user (string) – Effective user for the HDFS operations (default: None -
current user)

• use_sasl (boolean) – Use SASL authentication or not

• hdfs_namenode_principal (string) – Kerberos principal to use for HDFS

3

snakebite Documentation, Release 2.11.0

• sock_connect_timeout (int) – Socket connection timeout in seconds

• sock_request_timeout (int) – Request timeout in seconds

• use_datanode_hostname (boolean) – Use hostname instead of IP address to com-
muicate with datanodes

cat(paths, check_crc=False)
Fetch all files that match the source file pattern and display their content on stdout.

Parameters

• paths (list of strings) – Paths to display

• check_crc (boolean) – Check for checksum errors

Returns a generator that yields strings

chgrp(paths, group, recurse=False)
Change the group of paths.

Parameters

• paths (list) – List of paths to chgrp

• group – New group

• recurse (boolean) – Recursive chgrp

Returns a generator that yields dictionaries

chmod(paths, mode, recurse=False)
Change the mode for paths. This returns a list of maps containing the resut of the operation.

Parameters

• paths (list) – List of paths to chmod

• mode (int) – Octal mode (e.g. 0o755)

• recurse (boolean) – Recursive chmod

Returns a generator that yields dictionaries

Note: The top level directory is always included when recurse=True

chown(paths, owner, recurse=False)
Change the owner for paths. The owner can be specified as user or user:group

Parameters

• paths (list) – List of paths to chmod

• owner (string) – New owner

• recurse (boolean) – Recursive chown

Returns a generator that yields dictionaries

This always include the toplevel when recursing.

copyToLocal(paths, dst, check_crc=False)
Copy files that match the file source pattern to the local name. Source is kept. When copying multiple,
files, the destination must be a directory.

Parameters

4 Chapter 1. Client library

snakebite Documentation, Release 2.11.0

• paths (list of strings) – Paths to copy

• dst (string) – Destination path

• check_crc (boolean) – Check for checksum errors

Returns a generator that yields strings

count(paths)
Count files in a path

Parameters paths (list) – List of paths to count

Returns a generator that yields dictionaries

Examples:

>>> list(client.count(['/']))
[{'spaceConsumed': 260185L, 'quota': 2147483647L, 'spaceQuota': 18446744073709551615L, 'length': 260185L, 'directoryCount': 9L, 'path': '/', 'fileCount': 34L}]

delete(paths, recurse=False)
Delete paths

Parameters

• paths (list) – Paths to delete

• recurse (boolean) – Recursive delete (use with care!)

Returns a generator that yields dictionaries

Note: Recursive deletion uses the NameNode recursive deletion functionality instead of letting the client
recurse. Hadoops client recurses by itself and thus showing all files and directories that are deleted.
Snakebite doesn’t.

df()
Get FS information

Returns a dictionary

Examples:

>>> client.df()
{'used': 491520L, 'capacity': 120137519104L, 'under_replicated': 0L, 'missing_blocks': 0L, 'filesystem': 'hdfs://localhost:8020', 'remaining': 19669295104L, 'corrupt_blocks': 0L}

du(paths, include_toplevel=False, include_children=True)
Returns size information for paths

Parameters

• paths (list) – Paths to du

• include_toplevel (boolean) – Include the given path in the result. If the path is a
file, include_toplevel is always True.

• include_children (boolean) – Include child nodes in the result.

Returns a generator that yields dictionaries

Examples:

Children:

5

snakebite Documentation, Release 2.11.0

>>> list(client.du(['/']))
[{'path': '/Makefile', 'length': 6783L}, {'path': '/build', 'length': 244778L}, {'path': '/index.asciidoc', 'length': 100L}, {'path': '/source', 'length': 8524L}]

Directory only:

>>> list(client.du(['/'], include_toplevel=True, include_children=False))
[{'path': '/', 'length': 260185L}]

getmerge(path, dst, newline=False, check_crc=False)
Get all the files in the directories that match the source file pattern and merge and sort them to only one
file on local fs.

Parameters

• paths (string) – Directory containing files that will be merged

• dst (string) – Path of file that will be written

• nl (boolean) – Add a newline character at the end of each file.

Returns string content of the merged file at dst

ls(paths, recurse=False, include_toplevel=False, include_children=True)
Issues ‘ls’ command and returns a list of maps that contain fileinfo

Parameters

• paths (list) – Paths to list

• recurse (boolean) – Recursive listing

• include_toplevel (boolean) – Include the given path in the listing. If the path is
a file, include_toplevel is always True.

• include_children (boolean) – Include child nodes in the listing.

Returns a generator that yields dictionaries

Examples:

Directory listing

>>> list(client.ls(["/"]))
[{'group': u'supergroup', 'permission': 420, 'file_type': 'f', 'access_time': 1367317324982L, 'block_replication': 1, 'modification_time': 1367317325346L, 'length': 6783L, 'blocksize': 134217728L, 'owner': u'wouter', 'path': '/Makefile'}, {'group': u'supergroup', 'permission': 493, 'file_type': 'd', 'access_time': 0L, 'block_replication': 0, 'modification_time': 1367317325431L, 'length': 0L, 'blocksize': 0L, 'owner': u'wouter', 'path': '/build'}, {'group': u'supergroup', 'permission': 420, 'file_type': 'f', 'access_time': 1367317326510L, 'block_replication': 1, 'modification_time': 1367317326522L, 'length': 100L, 'blocksize': 134217728L, 'owner': u'wouter', 'path': '/index.asciidoc'}, {'group': u'supergroup', 'permission': 493, 'file_type': 'd', 'access_time': 0L, 'block_replication': 0, 'modification_time': 1367317326628L, 'length': 0L, 'blocksize': 0L, 'owner': u'wouter', 'path': '/source'}]

File listing

>>> list(client.ls(["/Makefile"]))
[{'group': u'supergroup', 'permission': 420, 'file_type': 'f', 'access_time': 1367317324982L, 'block_replication': 1, 'modification_time': 1367317325346L, 'length': 6783L, 'blocksize': 134217728L, 'owner': u'wouter', 'path': '/Makefile'}]

Get directory information

>>> list(client.ls(["/source"], include_toplevel=True, include_children=False))
[{'group': u'supergroup', 'permission': 493, 'file_type': 'd', 'access_time': 0L, 'block_replication': 0, 'modification_time': 1367317326628L, 'length': 0L, 'blocksize': 0L, 'owner': u'wouter', 'path': '/source'}]

mkdir(paths, create_parent=False, mode=493)
Create a directoryCount

Parameters

• paths (list of strings) – Paths to create

• create_parent (boolean) – Also create the parent directories

• mode (int) – Mode the directory should be created with

6 Chapter 1. Client library

snakebite Documentation, Release 2.11.0

Returns a generator that yields dictionaries

rename(paths, dst)
Rename (move) path(s) to a destination

Parameters

• paths (list) – Source paths

• dst (string) – destination

Returns a generator that yields dictionaries

rename2(path, dst, overwriteDest=False)
Rename (but don’t move) path to a destination

By only renaming, we mean that you can’t move a file or folder out or in other folder. The renaming can
only happen within the folder the file or folder lies in.

Note that this operation “always succeeds” unless an exception is raised, hence, the dict returned from this
function doesn’t have the ‘result’ key.

Since you can’t move with this operation, and only rename, it would not make sense to pass multiple paths
to rename to a single destination. This method uses the underlying rename2 method.

https://github.com/apache/hadoop/blob/ae91b13/hadoop-hdfs-project/hadoop-
hdfs/src/main/java/org/apache/hadoop/hdfs/protocol/ClientProtocol.java#L483-L523

Out of all the different exceptions mentioned in the link above, this method only wraps the FileAlreadyEx-
istsException exception. You will also get a FileAlreadyExistsException if you have overwriteDest=True
and the destination folder is not empty. The other exceptions will just be passed along.

Parameters

• path (string) – Source path

• dst (string) – destination

Returns A dictionary or None

rmdir(paths)
Delete a directory

Parameters paths (list) – Paths to delete

Returns a generator that yields dictionaries

serverdefaults(force_reload=False)
Get server defaults, caching the results. If there are no results saved, or the force_reload flag is True, it
will query the HDFS server for its default parameter values. Otherwise, it will simply return the results it
has already queried.

Note: This function returns a copy of the results loaded from the server, so you can manipulate or change
them as you’d like. If for any reason you need to change the results the client saves, you must access the
property client._server_defaults directly.

Parameters force_reload (bool) – Should the server defaults be reloaded even if they
already exist?

Returns dictionary with the following keys: blockSize, bytesPerChecksum, writePacketSize,
replication, fileBufferSize, encryptDataTransfer, trashInterval, checksumType

Example:

7

https://github.com/apache/hadoop/blob/ae91b13/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/protocol/ClientProtocol.java#L483-L523
https://github.com/apache/hadoop/blob/ae91b13/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/protocol/ClientProtocol.java#L483-L523

snakebite Documentation, Release 2.11.0

>>> client.serverdefaults()
[{'writePacketSize': 65536, 'fileBufferSize': 4096, 'replication': 1, 'bytesPerChecksum': 512, 'trashInterval': 0L, 'blockSize': 134217728L, 'encryptDataTransfer': False, 'checksumType': 2}]

setrep(paths, replication, recurse=False)
Set the replication factor for paths

Parameters

• paths (list) – Paths

• replication – Replication factor

• recurse (boolean) – Apply replication factor recursive

Returns a generator that yields dictionaries

stat(paths)
Stat a fileCount

Parameters paths (string) – Path

Returns a dictionary

Example:

>>> client.stat(['/index.asciidoc'])
{'blocksize': 134217728L, 'owner': u'wouter', 'length': 100L, 'access_time': 1367317326510L, 'group': u'supergroup', 'permission': 420, 'file_type': 'f', 'path': '/index.asciidoc', 'modification_time': 1367317326522L, 'block_replication': 1}

tail(path, tail_length=1024, append=False)
Show the end of the file - default 1KB, supports up to the Hadoop block size.

Parameters

• path (string) – Path to read

• tail_length (int) – The length to read from the end of the file - default 1KB, up to
block size.

• append (bool) – Currently not implemented

Returns a generator that yields strings

test(path, exists=False, directory=False, zero_length=False)
Test if a path exist, is a directory or has zero length

Parameters

• path (string) – Path to test

• exists (boolean) – Check if the path exists

• directory (boolean) – Check if the path is a directory

• zero_length (boolean) – Check if the path is zero-length

Returns a boolean

Note: directory and zero length are AND’d.

text(paths, check_crc=False)
Takes a source file and outputs the file in text format. The allowed formats are gzip and bzip2

Parameters

• paths (list of strings) – Paths to display

8 Chapter 1. Client library

snakebite Documentation, Release 2.11.0

• check_crc (boolean) – Check for checksum errors

Returns a generator that yields strings

touchz(paths, replication=None, blocksize=None)
Create a zero length file or updates the timestamp on a zero length file

Parameters

• paths (list) – Paths

• replication – Replication factor

• blocksize (int) – Block size (in bytes) of the newly created file

Returns a generator that yields dictionaries

class snakebite.client.AutoConfigClient(hadoop_version=9, effective_user=None,
use_sasl=False)

A pure python HDFS client that support HA and is auto configured through the HADOOP_HOME environment
variable.

HAClient is fully backwards compatible with the vanilla Client and can be used for a non
HA cluster as well. This client tries to read ${HADOOP_HOME}/conf/hdfs-site.xml and
${HADOOP_HOME}/conf/core-site.xml to get the address of the namenode.

The behaviour is the same as Client.

Example:

>>> from snakebite.client import AutoConfigClient
>>> client = AutoConfigClient()
>>> for x in client.ls(['/']):
... print x

Note: Different Hadoop distributions use different protocol versions. Snakebite defaults to 9, but this can be
set by passing in the hadoop_version parameter to the constructor.

Parameters

• hadoop_version (int) – What hadoop protocol version should be used (default: 9)

• effective_user (string) – Effective user for the HDFS operations (default: None -
current user)

• use_sasl (boolean) – Use SASL for authenication or not

class snakebite.client.HAClient(namenodes, use_trash=False, effective_user=None,
use_sasl=False, hdfs_namenode_principal=None,
max_failovers=15, max_retries=10, base_sleep=500,
max_sleep=15000, sock_connect_timeout=10000,
sock_request_timeout=10000, use_datanode_hostname=False)

Snakebite client with support for High Availability

HAClient is fully backwards compatible with the vanilla Client and can be used for a non HA cluster as well.

Example:

>>> from snakebite.client import HAClient
>>> from snakebite.namenode import Namenode
>>> n1 = Namenode("namenode1.mydomain", 8020)
>>> n2 = Namenode("namenode2.mydomain", 8020)

9

snakebite Documentation, Release 2.11.0

>>> client = HAClient([n1, n2], use_trash=True)
>>> for x in client.ls(['/']):
... print x

Note: Different Hadoop distributions use different protocol versions. Snakebite defaults to 9, but this can be
set by passing in the version parameter to the Namenode class constructor.

Parameters

• namenodes (list) – Set of namenodes for HA setup

• use_trash (boolean) – Use a trash when removing files.

• effective_user (string) – Effective user for the HDFS operations (default: None -
current user)

• use_sasl (boolean) – Use SASL authentication or not

• hdfs_namenode_principal (string) – Kerberos principal to use for HDFS

• max_retries (int) – Number of failovers in case of connection issues

• max_retries – Max number of retries for failures

• base_sleep (int) – Base sleep time for retries in milliseconds

• max_sleep (int) – Max sleep time for retries in milliseconds

• sock_connect_timeout (int) – Socket connection timeout in seconds

• sock_request_timeout (int) – Request timeout in seconds

• use_datanode_hostname (boolean) – Use hostname instead of IP address to com-
muicate with datanodes

10 Chapter 1. Client library

CHAPTER 2

CLI client

A command line interface for HDFS using snakebite.client.

2.1 Config

Snakebite CLI can accept configuration in a couple of different ways, but there’s strict priority for each of them. List
of methods, in priority order:

1. via path in command line - eg: hdfs://namenode_host:port/path

2. via -n, -p, -V flags in command line

3. via ~/.snakebiterc file

4. via /etc/snakebiterc file

5. via $HADOOP_HOME/core-site.xml and/or $HADOOP_HOME/hdfs-site.xml files

6. via core-site.xml and/or hdfs-site.xml in default locations

More about methods from 3 to 6 below.

2.1.1 Config files

Snakebite config can exist in ~/.snakebiterc - per system user, or in /etc/snakebiterc - system wide
config.

A config looks like:

{
"config_version": 2,
"skiptrash": true,
"namenodes": [

{"host": "mynamenode1", "port": 8020, "version": 9},
{"host": "mynamenode2", "port": 8020, "version": 9}

]
}

The version property denotes the protocol version used. CDH 4.1.3 uses protocol 7, while HDP 2.0 uses protocol 9.
Snakebite defaults to 9. Default port of namenode is 8020. Default value of skiptrash is true.

11

snakebite Documentation, Release 2.11.0

2.1.2 Hadoop config files

Last two methods of providing config for snakebite is through hadoop config files. If HADOOP_HOME environment
variable is set, snakebite will try to find core-site.xml and/or hdfs-site.xml files in $HADOOP_HOME
directory. If HADOOP_HOME is not set, snakebite will try to find those files in a couple of default hadoop config
locations:

• /etc/hadoop/conf/core-site.xml

• /usr/local/etc/hadoop/conf/core-site.xml

• /usr/local/hadoop/conf/core-site.xml

• /etc/hadoop/conf/hdfs-site.xml

• /usr/local/etc/hadoop/conf/hdfs-site.xml

• /usr/local/hadoop/conf/hdfs-site.xml

2.2 Bash completion

Snakebite CLI comes with bash completion file in /scripts. If snakebite is installed via debian package it will install
completion file automatically. But if snakebite is installed via pip/setup.py it will not do that, as it would requite write
access in /etc (usually root), in that case it’s required to install completion script manually.

2.3 Usage

snakebite [general options] cmd [arguments]
general options:

-D --debug Show debug information
-V --version Hadoop protocol version (default:9)
-h --help show help
-j --json JSON output
-n --namenode namenode host
-p --port namenode RPC port (default: 8020)
-v --ver Display snakebite version

commands:
cat [paths] copy source paths to stdout
chgrp <grp> [paths] change group
chmod <mode> [paths] change file mode (octal)
chown <owner:grp> [paths] change owner
copyToLocal [paths] dst copy paths to local file system destination
count [paths] display stats for paths
df display fs stats
du [paths] display disk usage statistics
get file dst copy files to local file system destination
getmerge dir dst concatenates files in source dir into destination local file
ls [paths] list a path
mkdir [paths] create directories
mkdirp [paths] create directories and their parents
mv [paths] dst move paths to destination
rm [paths] remove paths
rmdir [dirs] delete a directory
serverdefaults show server information
setrep <rep> [paths] set replication factor

12 Chapter 2. CLI client

snakebite Documentation, Release 2.11.0

stat [paths] stat information
tail path display last kilobyte of the file to stdout
test path test a path
text path [paths] output file in text format
touchz [paths] creates a file of zero length
usage <cmd> show cmd usage

to see command-specific options use: snakebite [cmd] --help

2.3. Usage 13

snakebite Documentation, Release 2.11.0

14 Chapter 2. CLI client

CHAPTER 3

Development

3.1 How to start

We try to make it as easy as possible to start development on snakebite. We recommend to use virtualenv (+ virtualen-
vwrapper) for development purposes, it’s not required to but highly recommended. To install, and create development
environment for snakebite:

1. install virtualenvwrapper: $ pip install virtualenvwrapper 2. create development environment: $
mkvirtualenv snakebite_dev

More about virtualenvwrapper and virtualenv here

Below is the list of recommended steps to start development:

1. clone repo: $ git clone git@github.com:spotify/snakebite.git 2. fetch all developer require-
ments: $ pip install -r requirements-dev.txt 3. run tests: $ python setup.py test

If tests succeeded you are ready to hack! Remember to always test your changes and please come back with a PR <3

3.2 Open issues

If you’re looking for open issues please take a look here.

Thanks!

15

https://virtualenvwrapper.readthedocs.io/en/latest/
https://github.com/spotify/snakebite/issues

snakebite Documentation, Release 2.11.0

16 Chapter 3. Development

CHAPTER 4

Testing

Snakebite provides integration and unit tests for its functionalities. To be able to truly test integration
with HDFS, we provide wrapper around snakebite.minicluster, and base class for integration tests
MiniClusterTestBase - on setup for such test class minicluster is started, when tests are done minicluster is
destroyed. There’s some performance overhead - but it’s not a problem (yet).

Snakebite by default uses nose and tox for testing. Tests are integrated with setup.py, so to start tests one can simply:
$ python setup.py test

Because we require minicluster to fully test snakebite, java needs to be present on the system.

Note: It’s possible to run snakebite tests inside snakebite Docker test image - to learn more see section Fig below.
Note that it’s not default testing method as it requires Docker to be present.

4.1 Tox

Tox allow us to create automated isolated python test environments. It’s also a place where we can prepare environment
for testing - like download hadoop distributions, set environment variables etc. Tox configuration is available in
tox.ini file in root directory.

There are 4 test environments:

• python 2.6 + CDH

• python 2.7 + CDH

• python 2.6 + HDP

• python 2.7 + HDP

We bootstrap environment with pip install -r requirements-dev.txt (deps section) And then we setup
environment via /scripts/ci/setup_env.sh script. setup_env.sh script downloads hadoop distribution
tar, and extracts it. Help for setup_env.sh:: Setup environment for snakebite tests

options:

-h, --help show brief help

-o, --only-download just download hadoop tar(s)

-e, --only-extract just extract hadoop tar(s)

-d, --distro select distro (hdp|cdh)b

17

https://nose.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/

snakebite Documentation, Release 2.11.0

When environment is ready we actually run tests via: /scripts/ci/run_tests.sh

One can run tests manually via /scripts/ci/run_tests.sh but make sure that HADOOP_HOME environment
variable exists so that it knows where to find minicluster jar file. This way it’s possible to test snakebite against custom
Hadoop distributions. run_tests.sh script uses nose for testing, so that if you wish to pass anything to nose, just
add parameters to run_tests.sh.

One can pass parameters to tox/nose through setup.py via --tox-args flag:

$ python setup.py test --tox-args="--recreate -e py26-hdp ’--quiet’"

Will test py26-hdp tox environment, make sure it will be recreated, and also through run_tests.sh script instruct
nose to be quite.

$ python setup.py test --tox-args="-e py26-hdp test/test_test.py

Will use py26-hdp tox environment and also instruct nose to run only tests from test/test_test.py.

4.2 Fig

Note: Fig is experimental testing method, it’s very promissing though.

Fig is “fast, isolated development environments using Docker”. It abstracts away whole test environment, create
completely fresh and isolated test environments using Docker.

Currently we use base testing image ravwojdyla/snakebite_test:base, it was created using
/scripts/build-base-test-docker.sh and /scripts/Dockerfile. Base test image is a Ubuntu
Trusty with: * oracle java 7 * python 2.6 * python 2.7 * pip * CDH distribution * HDP distribution

Base docker image doesn’t change, to create new test image with current working tree, based on
ravwojdyla/snakebite_test:base:

$ fig build

Fig will create new image based on ravwojdyla/snakebite_test:base, with current working tree, that can
be used for tests. Fig currently specifies 4 tests: * testPy26cdh: python 2.6 + CDH * testPy26hdp: python 2.6
+ HDP * testPy27cdh: python 2.7 + CDH * testPy27hdp: python 2.7 + HDP

To run specific test (eg. testPy26cdh):

$ fig run testPy26cdh

The biggest value in Fig is that tests are completely isolated, all the snakebite dependencies are present on test image.
Unfortunately Fig depends on Docker - which is quite a big dependency to have, and that’s why it’s default method of
testing for snakebite. It’s worth to mention that Fig still uses Tox inside test container.

18 Chapter 4. Testing

http://www.fig.sh/

CHAPTER 5

Minicluster

class snakebite.minicluster.MiniCluster(testfiles_path, start_cluster=True, nnport=None)
Class that spawns a hadoop mini cluster and wrap hadoop functionality

This class requires the HADOOP_HOME environment variable to be set to run the hadoop command. It will
search HADOOP_HOME for hadoop-mapreduce-client-jobclient<version>-tests.jar, but
the location of this jar can also be supplied by the HADOOP_JOBCLIENT_JAR environment variable.

Since the current minicluster interface doesn’t provide for specifying the namenode post number, and chooses a
random one, this class parses the output from the minicluster to find the port numer.

All supplied methods (like put(), ls(), etc) use the hadoop command to perform operations, and not the
snakebite client, since this is used for testing snakebite itself.

All methods return a list of maps that are snakebite compatible.

Example without snakebite.client

>>> from snakebite.minicluster import MiniCluster
>>> cluster = MiniCluster("/path/to/test/files")
>>> ls_output = cluster.ls(["/"])

Example with snakebite.client

>>> from snakebite.minicluster import MiniCluster
>>> from snakebite.client import Client
>>> cluster = MiniCluster("/path/to/test/files")
>>> client = Client('localhost', cluster.port)
>>> ls_output = client.ls(["/"])

Just as the snakebite client, the cluster methods take a list of strings as paths. Wherever a method takes
extra_args, normal hadoop command arguments can be given (like -r, -f, etc).

More info can be found at http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
common/CLIMiniCluster.html

Note: A minicluster will be started at instantiation

Note: Not all hadoop commands have been implemented, only the ones that were necessary for testing the
snakebite client, but please feel free to add them

Parameters

19

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CLIMiniCluster.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CLIMiniCluster.html

snakebite Documentation, Release 2.11.0

• testfiles_path (string) – Local path where test files can be found. Mainly used for
put()

• start_cluster (boolean) – start a MiniCluster on initialization. If False, this class
will act as an interface to the hadoop fs command

count(src)
Perform count on a path

df(src)
Perform df on a path

du(src, extra_args=[])
Perform du on a path

exists(path)
Return True if <src> exists, False if doesn’t

is_directory(path)
Return True if <path> is a directory, False if it’s NOT a directory

is_files(path)
Return True if <path> is a file, False if it’s NOT a file

is_greater_then_zero_bytes(path)
Return True if file <path> is greater than zero bytes in size, False otherwise

is_zero_bytes_file(path)
Return True if file <path> is zero bytes in size, else return False

ls(src, extra_args=[])
List files in a directory

mkdir(src, extra_args=[])
Create a directory

put(src, dst)
Upload a file to HDFS

This will take a file from the testfiles_path supplied in the constuctor.

terminate()
Terminate the cluster

Since the minicluster is started as a subprocess, this method has to be called explicitely when your program
ends.

20 Chapter 5. Minicluster

CHAPTER 6

Hadoop RPC protocol description

Snakebite currently implements the following protocol in snakebite.channel.SocketRpcChannel to com-
municate with the NameNode.

6.1 Connection

The Hadoop RPC protocol works as described below. On connection, headers are sent to setup a session. After that,
multiple requests can be sent within the session.

Function Type Default
Header bytes “hrpc”
Version uint8 7
Auth method uint8 80 (Auth method SIMPLE)
Serialization type uint8 0 (protobuf)
IpcConnectionContextProto length uint32
IpcConnectionContextProto bytes

6.2 Sending messages

When sending a message, the following is sent to the sever:

Function Type
Length of the next two parts uint32
RpcPayloadHeaderProto length varint
RpcPayloadHeaderProto protobuf serialized message
HadoopRpcRequestProto length varint
HadoopRpcRequestProto protobuf serialized message

varint is a Protocol Buffer variable int.

Note: The Java protobuf implementation uses writeToDelimited to prepend the message with their lenght, but
the python implementation doesn’t implement such a method (yet).

Next to an rpcKind (snakebites default is RPC_PROTOCOL_BUFFER), an rpcOp (snakebites default is
RPC_FINAL_PAYLOAD), the RpcPayloadHeaderProto message defines a callId that is added in the RPC
response (described below).

21

https://developers.google.com/protocol-buffers/docs/encoding#varints

snakebite Documentation, Release 2.11.0

The HadoopRpcRequestProto contains a methodName field that defines what server method is called and a has
a property request that contains the serialized actual request message.

6.3 Receiving messages

After a message is sent, the response can be read in the following way:

Function Type
Length of the RpcResponseHeaderProto varint
RpcResponseHeaderProto bytes
Length of the RPC response uint32
Serialized RPC response bytes

The RpcResponseHeaderProto contains the callId of the request and a status field. The status can be
SUCCESS, ERROR or FAILURE. In case SUCCESS the rest of response is a complete protobuf response.

In case of ERROR, the response looks like follows:

Function Type
Length of the RpcResponseHeaderProto varint
RpcResponseHeaderProto bytes
Length of the RPC response uint32
Length of the Exeption class name uint32
Exception class name utf-8 string
Length of the stack trace uint32
Stack trace utf-8 string

• A pure python HDFS client library that uses protobuf messages over Hadoop RPC to communicate with HDFS.

• A command line interface (CLI) for HDFS that uses the pure python client library.

• A hadoop minicluster wrapper.

• Hadoop RPC specification.

22 Chapter 6. Hadoop RPC protocol description

CHAPTER 7

Background

Since the ‘normal’ Hadoop HDFS client (hadoop fs) is written in Java and has a lot of dependencies on Hadoop
jars, startup times are quite high (> 3 secs). This isn’t ideal for integrating Hadoop commands in python projects.

At Spotify we use the luigi job scheduler that relies on doing a lot of existence checks and moving data around in
HDFS. And since calling hadoop from python is expensive, we decided to write a pure python HDFS client that only
relies on protobuf. The current snakebite.client library uses protobuf messages and implements the Hadoop
RPC protocol for talking to the NameNode.

During development, we needed to verify snakebite.client behavior against the real client and for that we
implemented a minicluster that wraps a Hadoop Java mini cluster. Obviously this minicluster can be used
in different projects, so we made it a part of snakebite.

And since it’s nice to have a CLI that uses snakebite.client we’ve implemented a CLI client as well.

Warning: all methods that read data from a data node are able to check the CRC during transfer, but this is
disabled by default because of performance reasons. This is the opposite behaviour from the stock Hadoop client.

23

http://github.com/spotify/luigi

snakebite Documentation, Release 2.11.0

24 Chapter 7. Background

CHAPTER 8

LICENSE

Copyright (c) 2013 - 2014 Spotify AB

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

Code in channel, logger and service was borrowed from https://code.google.com/p/protobuf-socket-rpc/ and
carries it’s respective license.

25

http://www.apache.org/licenses/LICENSE-2.0
https://code.google.com/p/protobuf-socket-rpc/

snakebite Documentation, Release 2.11.0

26 Chapter 8. LICENSE

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

27

snakebite Documentation, Release 2.11.0

28 Chapter 9. Indices and tables

Python Module Index

s
snakebite.client, 3
snakebite.minicluster, 19

29

snakebite Documentation, Release 2.11.0

30 Python Module Index

Index

A
AutoConfigClient (class in snakebite.client), 9

C
cat() (snakebite.client.Client method), 4
chgrp() (snakebite.client.Client method), 4
chmod() (snakebite.client.Client method), 4
chown() (snakebite.client.Client method), 4
Client (class in snakebite.client), 3
copyToLocal() (snakebite.client.Client method), 4
count() (snakebite.client.Client method), 5
count() (snakebite.minicluster.MiniCluster method), 20

D
delete() (snakebite.client.Client method), 5
df() (snakebite.client.Client method), 5
df() (snakebite.minicluster.MiniCluster method), 20
du() (snakebite.client.Client method), 5
du() (snakebite.minicluster.MiniCluster method), 20

E
exists() (snakebite.minicluster.MiniCluster method), 20

G
getmerge() (snakebite.client.Client method), 6

H
HAClient (class in snakebite.client), 9

I
is_directory() (snakebite.minicluster.MiniCluster

method), 20
is_files() (snakebite.minicluster.MiniCluster method), 20
is_greater_then_zero_bytes()

(snakebite.minicluster.MiniCluster method), 20
is_zero_bytes_file() (snakebite.minicluster.MiniCluster

method), 20

L
ls() (snakebite.client.Client method), 6

ls() (snakebite.minicluster.MiniCluster method), 20

M
MiniCluster (class in snakebite.minicluster), 19
mkdir() (snakebite.client.Client method), 6
mkdir() (snakebite.minicluster.MiniCluster method), 20

P
put() (snakebite.minicluster.MiniCluster method), 20

R
rename() (snakebite.client.Client method), 7
rename2() (snakebite.client.Client method), 7
rmdir() (snakebite.client.Client method), 7

S
serverdefaults() (snakebite.client.Client method), 7
setrep() (snakebite.client.Client method), 8
snakebite.client (module), 3
snakebite.minicluster (module), 19
stat() (snakebite.client.Client method), 8

T
tail() (snakebite.client.Client method), 8
terminate() (snakebite.minicluster.MiniCluster method),

20
test() (snakebite.client.Client method), 8
text() (snakebite.client.Client method), 8
touchz() (snakebite.client.Client method), 9

31

	Client library
	CLI client
	Config
	Bash completion
	Usage

	Development
	How to start
	Open issues

	Testing
	Tox
	Fig

	Minicluster
	Hadoop RPC protocol description
	Connection
	Sending messages
	Receiving messages

	Background
	LICENSE
	Indices and tables
	Python Module Index

